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a b s t r a c t

By performing numerical simulations, we discuss the collisional dynamics of stable solitary waves in
the Schrödinger–Poisson equation. In the framework of a model in which part or all of dark matter is
a Bose–Einstein condensate of ultralight axions, we show that these dynamics can naturally account for
the relative displacement between dark and ordinary matter in the galactic cluster Abell 3827, whose re-
cent observation is the first empirical evidence of dark matter interactions beyond gravity. The essential
assumption is the existence of solitonic galactic cores in the kiloparsec scale. For this reason, we present
simulations with a benchmark value of the axionmassma = 2×10−24eV, which is somewhat lower than
the one preferred for cosmological structure formation if the field is all of dark matter (ma ≈ 10−22 eV).
We argue that future observations might bear out or falsify this coherent wave interpretation of dark
matter offsets.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The nature of dark matter is one of the most important open
problems in fundamental physics. Projected experiments and
astronomical observations are expected to shed new light on this
question in the next decade [1].

In this context, the first evidence of dark matter (DM) non-
gravitational self-interaction has been recently reported for the
Abell 3827 cluster [2] (z ≈ 0.1), where a displacement of the stars
with respect to the maximum density of its DM halo has been ob-
served, for some of the merging galaxies [3]. Possible explanations
for this offset within theΛCDM model comprise casual alignment
with othermassive structures thatmight influence the results from
gravitational lensing, astrophysical effects affecting the baryonic
matter, tidal forces or simplywrong identification of lensed images
[4]. Even if these causes cannot be fully excluded, meticulous ob-
servations and simulations have shown that any such interpreta-
tion is unlikely to explain the collected data [4,5]. This tensionwith
collisionless dark matter models [5] suggests the necessity of con-
sidering other possibilities as, e.g. self-interacting darkmatter, that
yields a drag force slowing down the galactic DMdistributionwhile
leaving the standard model sector unaffected [3–5]. Nonetheless,
requiring that the drag induces the offset implies a lower bound for
the cross section that is in tensionwith upper bounds derived from
other observations, as carefully discussed in [6]. Thus, the Abell
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3827 cluster presents a challenging puzzle that opens up questions
of crucial importance to understand the nature and dynamics of
DM.

In this work, we address the problem of the measured offset
using the scalar field dark matter (ψDM) model [7–9], which con-
siders a Bose–Einstein condensate (BEC) of non-relativistic ultra-
light axions (ULAs) of mass ma subject to Newtonian gravity and
that was introduced to solve difficulties of ΛCDM (e.g. missing
satellites problem and cusp–core problem [10]), whilemaintaining
the successful phenomenology of themodel at cosmological scales
[11,12]. Impressive numerical simulations [13] resolving largely
different length scales have recently given support to this expecta-
tion. These extremely light scalar particles can arise in string theory
constructions, e.g. [14] and other extensions of the standardmodel,
e.g. [15]. Light scalars can also naturally appear as composites of
hidden theories like the random UV field theory scenario [16].

We will show that the wave-like coherent nature of BECs
severely affects the collisional dynamics of dark matter clumps,
providing important effective forces even in the absence of explicit
local interactions between the elementary dark matter constitu-
ents. We then discuss the possible relevance of this phenomenon
to the puzzling observations described above.

2. Mathematical model

In the condensed scalar field scenario, the DM dynamics is
governed by a Schrödinger–Poisson equation [17–20] for the
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mean-field wave-function ψ of the dark matter distribution:

i h̄∂tψ(t, x) = −
h̄2

2ma
∇

2ψ(t, x)+

−Gm2
aψ(t, x)


|ψ(t, x′)|2

|x′ − x|
d3x′, (1)

where |ψ |
2 is the particle number density, G the gravitational

constant and t and x are time and position. For simplicity, we
disregard cosmological evolution of the scale factor and the
contribution of baryonicmatter to the gravitational field, implicitly
assuming that they do not play a prominent role in the processes
studied below. Although a local interaction term λ|ψ |

2ψ can be
added to (1) [11,21,22], we will restrict ourselves to the simplest
λ = 0 case [7,12,13] that, as we show below, is enough to describe
the observed behavior. Notice, however, that drag forces appear in
similar mathematical models for optical systems with non-linear
terms λ ≠ 0, e.g. [23].

Eq. (1) can be recast in terms of adimensional quantities:

i ∂tψ(t, x) = −
1
2
∇

2ψ(t, x)+ Φ(t, x)ψ(t, x), (2)

∇
2Φ(t, x) = 4π |ψ(t, x)|2. (3)

Following [24], the adimensional unit of length, time and mass
correspond to:

8π h̄2

3m2
aH

2
0Ωm0
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4
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10−23 eV

ma
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2

kpc, (4)


3
8π
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 1
4 h̄

3
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≈ 7 × 107M⊙


10−23 eV

ma

 3
2

. (6)

We have taken H0 = 67.7 km/(s Mpc) for Hubble’s constant and
Ωm0 = 0.31 for the matter fraction of energy today.

Eq. (3) yields localized, radially symmetric, self-trapped robust
solutions

ψ(t, x) = αeiβt f (
√
α|x|), Φ(t, x) = αϕ(

√
α|x|), (7)

which we will loosely call solitons. α is an arbitrary scaling
constant, the propagation constant isβ = 2.454α, the solitonmass
isMsol =


|ψ |

2d3x = 3.883
√
α and its diameter (full width at half

maximum) is dsol = 1.380/
√
α. f (·) and ϕ(·) are functions that can

be computed numerically. In terms of dimensionful quantities, the
mass and size of the solitons are related by:

Msoldsol ≈
5.36 h̄2

m2
aG

≈ 4.6 × 1010


mac2

10−23 eV

−2

kpcM⊙, (8)

where M⊙ is the solar mass. In order to be reasonably self-
contained, we provide a supplementary file (see appendix A)
where we givemore details on these solutions and also discuss the
numerical methods used for the computations.

Finally, let us remark that these stationary states have been
independently discussed in several physical contexts: foundations
of quantum mechanics [20,25], cold trapped atoms [26,27], QCD-
axions [28] and ultralight DM [29,30]. This often overlooked formal
coincidence indicates that studies concerning Eq. (1) can have
deeply multidisciplinary implications.

3. Numerical simulations

In ψDM, galactic dark matter distributions consist of a core
which can be identifiedwith a soliton surrounded by a background
also governed by Eq. (3) and evolving in time and space with
uncorrelated phases [13,24,31].

In this work, we propose that the offset of Abell 3827 [3]
can come from the repulsion between coherent DM clumps (the
solitonic cores) in phase opposition, without any extra local in-
teractions. We show by numerical simulations that destructive
interference can provide a large effective force acting on the cores.
This repulsion between robustwave lumps iswell known in soliton
systems, from nonlinear optics [32,33] to atomic physics [34–36],
where the mathematical description of the phenomena is similar
to the theory of coherent DM waves.

In Ref. [3], observations of DM concentrations with mass of
the order of 1011M⊙ surrounding stellar distributions separated
by around 10 kpc were presented. This value of 1011M⊙ does not
correspond to a galactic mass, but to clumps within the cluster
that we will identify with solitonic cores. Most of the mass is in
the halo, which behaves incoherently and therefore does not feel
interferential forces. We will come back to this point in Section 4.
Taking the aforementioned values for Msol and dsol in Eq. (8), we
find mac2 ≈ 2 × 10−24 eV. We will fix this benchmark value for
the simulations below. In Section 5, we provide a discussion on
previous observational constraints on ma and on their relevance
to the phenomenon described here.

First, we have analyzed the collision of two DM solitons by
numerically integrating (3) with the initial condition:

ψ(t = 0, x) = αf
√
α|x − x0|


ei(v·x)

+αf
√
α|x + x0|


e−i(v·x−∆φ) (9)

where 2|x0| is the initial separation, 2v the initial relative velocity,
∆φ the relative phase and α is related to normalization as
described in Section 2 (adimensional units). Previous studies of this
sort with ∆φ = 0 can be found in [22,37]. We use a split-step
pseudo-spectral algorithm, known as beam propagation method
[38,39] (see the supplementary material for technical details). It is
worth quoting other powerful numerical methods that have been
recently developed for the Schrödinger equation with nonlocal
terms [40,41].

As expected, see e.g. [42] for a discussion in nonlinear optics
with a particular nonlinear potential, the outcome largely depends
on the relative phase and speed. In the case of phase opposition,
destructive interference creates a void region between the solitons
which can induce a bounce. For phase coincidence, the solitons
merge into a single matter lump (which for large initial velocities
eventually splits again). Interference fringes appear for large
velocities [22,37].

We must underline that in this work, for the first time to our
knowledge, the effect of coherent DM waves on luminous matter
has been calculated, by adding to our simulations test particles
following classical trajectories in the gravitational field generated
by the DM wave. These particles, initially located at the soliton
centers, are a toy representation of the stars and can be shifted
from the DM density peaks in a collision, as we show in Fig. 1
(see also supplementary videos 1 and 2). In Fig. 2, we plot the
comparison between the trajectories of the point particle and the
DM projected mass maximum. In order to check the limitations
of this particle model, we have made use of the well known
fact that Schrödinger equation can be cast into a hydrodynamic
form through the Madelung transformation [43]. This allows us to
develop a fluid toymodel inwhich luminousmatter is described as
a spatially extended cloud (see supplementary material). As it can
be seen in the inset of Fig. 2, bothmodels display a good qualitative
agreement.

Even if the collision in phase opposition is the simplest case,
luminous vs. DM shifts can happen in more general situations.
Fig. 3 and supplementary videos 3 and 4 show an example with
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Fig. 1. Simulation of the head-on collision of two DM solitonswithMsol = 1011M⊙ ,
centers initially separated by 40 kpc and relative velocity 200 km/s. The contours
show the projected DMmass density integrated over z. Dots are the point particles
representing the center of gravity of ordinary matter in each lump and arrows
indicate the direction of their velocity. Panels (a)–(d) show different instants of a
simulation in which the solitons are launched in phase coincidence and merge. The
sequence (e)–(h) corresponds to phase opposition and the DM clouds bounce back.

Fig. 2. Time evolution of the position of the maximum density of one of the
DM solitons and its corresponding test particle representing the stars for the
simulations of Fig. 1. For the particular cases studied ∆φ = 0, π , the dynamics for
the other soliton is symmetric. For the collision in phase opposition, corresponding
to the right column of Fig. 1, offsets between the maxima of DM and ordinary
matter are generated dynamically. The time evolution of the relative displacement
is shown in the inset. In the case of phase coincidence (∆φ = 0) no significant offset
is observed. For t > 85 Myr, the solitons have merged and the DM maximum lies
at the center and thus, the pink line is cut at this point.
four galaxies. Initial conditions are four solitons of mass Msol =

0.72× 1011M⊙ each, located at the vertices of a square of diagonal
40 kpc and initial velocities of 100 km/s towards the center,
with phases 0, π/2, π and 3π/2, respectively. When the solitons
approach each other, their phase gradients induce a rotation of
the DM cloud, with ordinary matter lagging behind. It is worth
mentioning that stationary rotating solutions of Eq. (1) have been
discussed in [44,45].

Interference also plays an important role in asymmetric colli-
sions if the phase difference between the lumps remains a well-
defined quantity during the process. As an estimation, take |β1 −

β2|∆tcol . 1 where β1 and β2 are the propagation constants of
each soliton and ∆tcol is the duration of the collision. In terms of
the soliton mass:

β(Myr−1) = 4.33


Msol

1011M⊙

2 
mac2

10−23 eV

3

. (10)

This yields:

∆tcol(Myr)


|Msol,1|
2
− |Msol,2|

2

(1011M⊙)2

 
mac2

10−23 eV

3

.
1

4.33
. (11)

In Section 4, a collision involving four solitons will be considered.
It is easy to check that the condition (11) holds in that case.

The relative phase between two solitons is a decisive factor for
their collisional dynamics, and, in the ψDM model, it is important
for galactic mergers. This phase is ultimately determined by initial
conditions at galactic formation. Moreover, the relative phase for
any pair solitons changes in time since the propagation constant
β depends on the mass, Eq. (10). In theory, given precise initial
conditions, the cosmological evolution of the axion field can be
computed deterministically in the semiclassical description of
Eq. (1) [13]. In practice, uncertainties in the initial conditions and
the evolution imply that the relative phase for a particular collision
can actually be considered as random.

4. Comparison with observations

We now show that, starting with separate solitons, the wave
dynamics of Eq. (1) can generate the gross features of the Abell
3827 cluster [3]: there are two DM blobs, one comprising galaxy
N.1, for which dark matter and stars are separated; and the other
one comprising galaxies N.2–N.4. In the present scenario, the
natural interpretation is that N.1 is in phase opposition to N.2
whereas N.3 and N.4 are in phase. Fig. 4 and supplementary videos
5 and 6 show the result of a simulation. Initially, four separate
solitons with masses 0.72, 0.95, 1.28 and 1.1 times 1011M⊙ are
considered. Solitons 1 and 3 are heading soliton 2 with relative
velocities of 220 and 180 km/s. Soliton 4 has an initial velocity of
900 km/s in the transverse direction, in order to agree with the
redshift measured in [3]. After evolution, we find offsets similar
to those displayed in [3]. Matching these qualitative features as in
Fig. 4 obviously requires an appropriate choice of initial conditions
but we remark that no special fine tuning is needed.

Obviously, the real conditions are far more complicated. Apart
from the coherent solitonic core, DM of field galaxies includes
a non-coherent halo with an approximate Navarro–Frenk–White
profile, see [24] for a detailed discussion. When the cluster is
formed, most of its matter will be in an incoherent state with, at
most, coherent lumps around the initial galactic cores (namely,
around the stellar distributions). However, the presence of a large
incoherent background does not necessarily change the qualitative
features of the dynamics. Clearly, the effect of soliton-cluster halo
interferences averages out to zero and can be neglected. Moreover,
since the background density varies only mildly within the cluster,
the gravitational forces it generates will not be dominant. A
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Fig. 3. Simulation showing an example of ordinary matter vs. DM offset in a vortex-like configuration. In (a), we show a three dimensional representation of the system at
time t = 450 Myr. The light and purple blobs are density iso-surfaces at 64% and 4% of the initial maximum density. Plots (b)–(e) are density color maps in logarithmic scale
for the z = 0 plane at the times indicated in each picture. In all plots, the red dots are the point particles representing ordinary matter. The offset can be clearly appreciated
at t = 150 Myr and t = 450 Myr.
Fig. 4. Anumerical simulation generating an offset similar to theAbell 3827 cluster.
The contour plot shows the projectedmass density at a given time. Dots (numbered
fromN.1 toN.4) are the point particles representing the center of gravity of ordinary
matter in each lump. Color lines indicate their trajectories from t = 0 to t = 130
Myr. The qualitative agreementwith observations reported in Ref. [3], including the
offset of N.1, is remarkable.

natural concern is whether incoherent matter might be attracted
by the larger densities at the solitons, leading to smaller and
more massive lumps. This is avoided if the kinetic energy of the
incoherent wave is enough to impede its absorption, as in [24] for
single galaxies. Supplementary video 7 shows how an incoherent
background1 does not severely affect the process of Fig. 4.

We now discuss the role of the background in the collision of
two galaxies exemplified in Fig. 1. As shown in [24], themerging of

1 In order to model the incoherent background, we define a number fnoise and,
at each point of the grid, we multiply by fnoise two random numbers taken from a
standard normal distribution and add them to the real and imaginary parts of ψ .
The average density associated to this background is 2f 2noise . For the simulation in
supplementary video 7, this density was taken to be half of the central density of
the soliton associated to galaxy N.1. This value of the noise, larger than the realistic
halo density, is taken for illustration. The video shows that it does not play a major
role and therefore fainter distributions are not likely to do so.
a number of solitons can produce a single pseudo-stationary struc-
ture with a new soliton at its core surrounded by a broad halo. In
supplementary video 8, we consider the collision of two structures
of this sort with the solitons in phase opposition, including the
test particles that simulate the stars (dashed lines). As expected,
we find an offset when the solitons bounce back from each other
whereas inertia makes the stars go ahead. In this particular case,
the visible matter is interchanged from one dark matter blob to
the other, which eventually captures it gravitationally. Even if this
simulation shows that the general conclusions of Section 3 hold, it
would clearly be desirable to perform further numerical studies.

5. Discussion on the axion mass

In this section, we briefly review the observational constraints
on the axion mass ma (see e.g. [31] and references therein) and
their relation to our dark wave interpretation of the offsets. The
essential hypothesis for ourmodeling is the existence of kiloparsec
scale coherent cores. We remark that the dark matter density
distributions for R . 5 − 6 kpc of galaxies like the Milky
Way are subject to large uncertainties [46,47] and therefore the
assumption is neither confirmed nor excluded by direct inference
of the galactic profiles.

It is natural to assume that we are in a scenario in which
the cusp–core problem is solved solely by ψDM. By studying the
Fornax dwarf galaxy in this context, the authors of Ref. [13] found
a best fit of mac2 = (8.1+1.6

−1.7) × 10−23 eV. A related analysis of
Fornax and Sculptor in Ref. [31] yielded a one-sided constraint
mac2 < 1.1 × 10−22 eV. See also [9] and references therein.

On the other hand, a lower bound mac2 > 10−24 eV comes
from requiring that ψDM is indistinguishable from ΛCDM for the
probes studied in [48]. This is a conservative lower bound, derived
only from linear constraints on the cosmicmicrowave background.
More stringent but also more model dependent lower bounds
were derived from nonlinear probes in [49–51], see also [9,52]
and references therein. Let us quote the result of [50], where it is
found that data from the Hubble Ultra-Deep Field exclude axions
with ma . 10−23 eV contributing more than half of DM. Signals
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from pulsars might soon give new information on the existence of
ultralight axions and their mass [53].

The benchmark value of ma = 2 × 10−24 eV that we have
fixed in the simulations shown in Sections 3 and 4 comes from
requiring solitonic coreswith radius of the order of few kiloparsecs
for masses of the order of 1011M⊙. We allow ourselves to use this
value of ma since it complies with the conservative lower bound
of [48]. However, we envisage two possibilities in which these
large cores could be present for larger values ofma:

First, ULAs could be just a fraction of dark matter, relaxing to
some extent the aforementioned stringent mass constraints, see
e.g. [50]. Moreover, the total mass constituting each solitonic core
would be smaller (for a fixed total dark matter mass), leading to
larger radii by virtue of Eq. (8). The mechanism introduced in this
paper can only cause a displacement of the ULA fraction of dark
matter from the stars, but that can anyway render an offset for the
DM center of mass.

Second, if a repulsive term λ|ψ |
2ψ , as first introduced in

[11,21], is added to Eq. (1), the soliton radius would be larger than
the one given in Eq. (8), see [27] for a detailed discussion.

If future observations and/or analysis indicate that ψDM can
only be realized with subkiloparsec cores for Milky Way-class
galaxies, it would then be unlikely that soliton interactions play
any role for providing relevant offsets within clusters like Abell
3827. Nevertheless, the analysis in this work would still play a
role for the interaction between the solitonic cores. Understanding
whether it might yield observational consequences is left for the
future.

6. Conclusions

We have discussed the phenomenon of soliton interactions
based on wave interference, which is relevant for any model of
BEC dark matter relying on a Schrödinger–Poisson equation [7–
9,28,54]. Large effective forces can be induced during collisions,
in analogy with well known experiments in laboratory BECs and
nonlinear optical systems.

If an ultralight scalar represents a significant fraction of DM,
it is plausible that interference between dark waves can have
observational consequences for galactic mergers and, in particular,
it can explain the consequential results of [3]. The simplest
setting for generating offsets is that of head on collisions in phase
opposition (see Figs. 1 and 2), but we stress that they appear in
more general situations (Figs. 3 and 4). The paramount hypothesis
is the existence of coherent cores with radii of the order of few
kiloparsecs. There are important qualitative differences with other
models of DM: the force acting on DM is between the solitonic
cores and not between a galaxy and the cluster halo. Moreover, the
outcome depends on the value of the relative phase at themoment
of the collision, which in a realistic situation could be taken as
random. These two points can be tested if other similar mergers
are observed with the level of detail achieved by [3] and can
potentially reconcile the offset in [3] with the lack thereof in other
systems [55,56], which are in tension in models with particle-like
interactions [6]. It is worth emphasizing that the dark matter shift
discussed here is different from the one observed in other systems
like the Bullet cluster [55], where the offset is between darkmatter
and gas, not stars, it is observed after the halos have traversed each
other and is perfectly consistent with collisionless dark matter. A
natural question is whether interference effects could then spoil
the standard description of those systems. That is unlikely because
the effective forces only act on the solitonic cores and are therefore
confined to the kiloparsec scale or less. We expect the corrections
to average out to zero in larger collisions like the Bullet cluster,
with a size of a fewmegaparsecs. Direct numerical confirmation of
this assertion is left for future work.
In the present work, we have considered an extremely sim-
plified description of galactic dynamics which is enough to un-
derstand the gross features that can be expected from a wavelike
behavior ofDM. Itwould of course bedesirable to incorporate these
features in more detailed simulations as, for instance, those re-
ported in [47] or [56].

Thus, we expect that through future theoretical progress and
astrophysical observations, the scientific community will be able
to discern the present scenario frommodels with explicit DM self-
interactions or other logical possibilities. In a broader perspective,
it isworth emphasizing that continuously improving observational
evidence increasingly calls for precise descriptions of nonlinear
phenomena. For instance [57] has studied the consequences of
nonlinear evolution in the formation of cosmic voids. It is of
great interest to understand whether alternatives to ΛCDM lead
to differences that might be experimentally tested. Whether the
discussion of the present contribution or the ψDM model in
general may have implications in this respect is a compelling
question for the future.

Finally, it is worth pointing out that, due to the formal coinci-
dence of the governing equations, refined control of trapped atoms
[26] and optical media [58] introducing gravity-like interactions
might allow for laboratory analogue simulators of galactic-scale
phenomena.
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