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Abstract
We demonstrate, through numerical simulations, the emission of a coherent continuous matter
wave of constant amplitude from a Bose–Einstein condensate in a shallow optical dipole trap.
The process is achieved by spatial control of the variations of the scattering length along the
trapping axis, including elastic three-body interactions due to dipole interactions. In our
approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains
unaltered. We calculate analytically the parameters for the experimental implementation of
this continuous wave atom laser.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The experimental realization of Bose–Einstein condensates
(BECs) with alkali atoms [1] has opened the door to the
realization of atomic beam sources of high coherence and
brightness, with strong analogy to optical laser beams. Such
‘atom lasers’ promise unprecedented achievements in fields
such as atomic interferometry or gravimetry and have been
proposed in several configurations, predominantly pulsed
[2–4] or semicontinuous [5–9], and with different outcoupling
mechanisms for guided atom lasers [10–12] and free-falling
atom lasers [13].

For instance, the first atom laser used short radio-
frequency pulses to outcouple atoms from the cavity, flipping
the spins of some of the atoms and releasing them from the
trap with the aid of gravity [2]. However, despite its success
in the first experiments on atom laser operation, spin-flipping
techniques have some limitations as a versatile outcoupling
mechanism for coherent matter-wave sources. In first place,
there are strong fluctuations in the output at high fluxes due
to the fact that the spin-flipping mechanism populates all
accessible Zeeman states [14]. This constitutes a strong
drawback for practical applications of atom lasers in high-

precision measurements such as matter-wave gyroscopes [15].
Moreover, in the former atom lasers, the emission process is
driven by gravity and thus the resulting matter wave is always
emitted in the vertical direction.

Atomic soliton lasers overcome the previous limitations
using the mechanism of modulational instability to trigger
the outcoupling of atoms from the cloud [3, 4]. Thus, in
this case, there is no need for gravity since the emission is
obtained by an adequate combination of nonlinear effects in
the atom cloud and the manipulation of the trap. In particular,
the necessary condition is that the total number of particles
in the cloud exceeds a critical threshold. Therefore, atomic
soliton lasers add arbitrary directionality to the emitted beam.
However, currently proposed matter-wave sources based on
nonlinear effects can only operate in a pulsed regime due to
modulational instability of the beam: a nonlinear effect which
yields a burst of atomic solitons [16–18]. These localized
nonlinear waves arise as a result of the perfect balance between
dispersive and nonlinear effects in one-dimensional systems.
A set of robust pulses that propagate without shape distortion
is therefore produced after the emission, thereby precluding
continuous operation of the matter-wave laser.

The goal of this paper is to present a novel outcoupling
mechanism for atomic beam sources which overcomes all the
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previous problems and produces directional continuous wave
(CW) emission of an atomic beam with constant amplitude.
The trick is to use a combination of a shallow dipolar potential
with attractive two-body and repulsive three-body interactions.
Such interatomic potentials can be obtained for strongly
dipolar atomic systems in the presence of adequately tuned
magnetic fields. [19] We will show that this technique allows
both the ability to extract atoms from the trap [4] and to
overcome modulational instability of the outcoupled beam,
thus providing fluent CW operation of the matter-wave laser.
Moreover, we will show that because of the inclusion of
the three-body elastic repulsion, the emitted wave displays
a constant amplitude and is very robust against perturbations,
permitting the achievement of atomic coherent sources with
unprecedented brightness and stability.

2. System configuration and theoretical model

Let us assume that an elongated BEC is strongly trapped in
the transverse directions (x, y) by a parabolic potential V⊥
and weakly confined in the longitudinal axis z by a shallow
dipole trap Vz of width L and depth V0. We also assume a
step variation along z of the atomic interactions. Thus, for
z < 0 (where the condensate is initially placed at t = 0), the
interatomic forces are set to a negligible value, whereas in the
z � 0 region, the value of the scattering length is such as to
yield strong two-body and three-body interactions comparable
to the trapping force along z.

We will consider the case of both two-body attractive
and three-body repulsive forces in the region z � 0. The
techniques for controlling the scattering length which produces
two-body attractive interactions are well known and may
include optical or magnetic fields [18, 20, 21]. It has also been
proposed that repulsive three-body forces can be activated with
an optical lattice driven by microwave fields in ultracold gases
of highly polar molecules [19], such as RbCs [22] or atoms
like Cr [23]. For this technique, Hubbard models predict
strong nearest-neighbour three-body interactions, whereas the
two-body terms can be tuned independently. Also, recent
experiments with ultracold Cs atoms [24] have revealed the
existence of the so-called Efimov states, which represent a
paradigm for universal quantum states in the three-body sector.
These remarkable results have opened the possibility of novel
BEC applications based on three-body controlled interactions,
as presented in this paper.

We will consider here a system of N weakly interacting
dipole bosons of mass m, trapped in a potential V (�r), where
the evolution in time t of the condensate wavefunction � is
correctly described according to experiments in [25] by a mean
field Gross–Pitaevskii equation of the form

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V (�r)� + �(z, |�|2)�, (1)

where N = ∫ |�|2 d3r. The functions V and � describe
respectively the external trap and the dipole–dipole induced
potential, which can be activated in the region z > 0. In
this work we consider a cigar-shaped BEC which is tightly
confined in (x, y) by means of a tubular harmonic trap.

A shallow potential provided by an optical dipole trap Vz

[26, 27] keeps the cloud trapped along the z direction. Thus,
the explicit form of the three-dimensional trap V is given by

V (�r) = V⊥ + Vz = mν2
⊥

2
(x2 + y2) + V0(z/L), (2)

ν⊥ being the frequency of the parabolic trap, V0 the depth of the
shallow optical dipole potential and L the characteristic size.
The potential barrier can be overcome, without destroying it,
if there is a spatial variation of atomic interactions. Thus,
we will consider the simple case in which the last term of
equation (2) is modulated by a step function along z of the
form �(z < 0) = 0 and �(z � 0) = U2|�|2 − U3|�|4
indicating U2 = 4πh̄2a/m and U3 = U2b as the strength
of two-body and three-body interactions, respectively. The
previous energies are determined by the value of the s-wave
scattering length a and an effective volume parameter b, which
indicate that three-body interactions act in a range ≈b1/3. In
the present work, we will consider a and b as positive constants.

3. One-dimensional eigenstates

We will consider setups in which the ground state of the
optical dipole trap is much larger than the ground state of
the transverse harmonic potential. In this situation, we can
describe the dynamics of the condensate in the quasi-one-
dimensional limit as given by a factorized wavefunction of
the form [16, 28] �(r, t) = �0(x, y) · χ(z, t). The density of
atoms per unit length is given by |χ |2. Normalizing the squared
wavefunction by setting |ψ |2 = √

8πa|χ |2, the following
dimensionless equation is obtained:

i
∂ψ

∂τ
= −1

2

∂2ψ

∂η2
+ f (η)ψ + (α|ψ |2 − β|ψ |4)ψ, (3)

where the normalized variables in time and space are τ = ν⊥t

(time measured in units of the inverse of the radial trapping
frequency) and η = z/r⊥ (length expressed in units of the
transverse size of the cloud r⊥ = √

h̄/mν⊥), f (η) = 2Vz/h̄ν⊥,
and α and β = b/4

√
2ar2

⊥ are the effective trap two-body
and three-body atomic interaction coefficients. Equation (3)
is known as the cubic–quintic (CQ) nonlinear Schrödinger
equation due to its dependence upon the cubic and quintic
powers of the wavefunction. This model has been extensively
used in nonlinear optics [29] as well as in superfluidity [30]
and has known analytical solutions for the one-dimensional
case.

In figure 1, the geometry of the system to be considered
in this paper is shown. The shallow potential with depth V0

and width L is represented by the shaded region. Within the
zone η � 0, non-zero interatomic interactions can be achieved
by magnetically tuning the Feshbach resonances [18, 20] or
by optical manipulation [19, 21].

We have searched numerically for eigenstates of
equation (3) with the form ψ(η, τ) = φ(η) eiμτ , where μ is the
chemical potential. It is well known that equation (3) features
a cut-off in the chemical potential spectrum, μcr = 3α2

16β
,

which constitutes the upper border of the existence domain
of localized solitonic solutions [30].
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Figure 1. Amplitude profiles of several eigenstates of equation (3)
calculated for different numbers of atoms in the cloud. The right
edge of the shallow trap (shaded zone) is located at η = 0. For the
zone with η > 0, both attractive two-body and repulsive three-body
interactions are characterized by α = β = 1. Inset: dependence of
the number of particles in the condensate N on the chemical
potential μ/μcr. The dashed (solid) line corresponds to the system
displayed in the outer plot with a potential of width L (L′ = 4L)).
The labelled points refer to the eigenfunctions displayed.

Starting from the ground state of the trapping potential ((a)
in figure 1) and by increasing gradually the number of atoms
N, the eigenfunctions tend to enter the nonlinear zone ((b) in
figure 1) displaying a high spatial localization. Once N reaches
a certain critical value, the shape of the eigenstate approaches
that of a continuous beam of fixed amplitude located outside

(a) (b) (c)

Figure 2. Evolution of a Gaussian atomic cloud in the presence of the localized gain � = �cr with the two-body coefficient α = 1 and
different values of the three-body atomic interactions: (a) β = 0, (b) β = 0.8 and (c) β = 1. In all snapshots, the x-axis displays the spatial
coordinate η and the y-axis corresponds to the evolution time τ ∈ [0, 500]. Shown below are the final density distribution plots of (a) top,
(b) middle and (c) bottom figures.

the trap ((c) in figure 1). In the latter case, the value of the
amplitude A is completely determined by the strength of
the atomic interactions and can be easily calculated for a
plane wave solution of the CQ homogeneous model [30].

As it can be appreciated in the inset of figure 1, in the case
of a narrow trap of width L, the dashed curve N versus μ/μcr

monotonically increases (far enough from the critical value μcr

where it becomes divergent) indicating that all eigenstates are
stable. Otherwise, the solid curve corresponding to a system
with a trap of width L′ = 4L shows a region with a negative
slope, yielding to the existence of an unstable domain. Note
that for μ → μcr, both curves merge because the nonlinearity
overcomes the trapping potential.

4. Continuous wave emission

Taking into account the previous eigenstate structure of
equation (3), we have performed a systematic analysis of the
evolution dynamics of an initial Gaussian atomic cloud of unit
amplitude and width ω = 5 placed at the centre of a shallow
square trap of depth V0 = 0.09 and width L = 4, by means of
numerical simulations of equation (3) in different parametric
regimes. Subsequent feeding of the cloud with more atoms
[31] has been simulated by adding a linear gain term i�ψ

to equation (3) (� ∈ 
) localized in the trapping region. In
the absence of nonlinear interactions (α = β = 0), the gain
effect is to increase the density of atoms in the trap. When
only two-body interactions are considered (β = 0), a burst of
solitons is emitted towards the region η > 0 as predicted
in previous work [4] (see picture (a) in figure 2). When
β > 0 and � is set below a certain critical threshold �cr, which

3



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 105302 A V Carpentier et al

(a) (b) (c)

(d) (e) (f)

Figure 3. Same as figure 2 for different values of the gain coefficient �/�cr. In all cases, we have fixed α = β = 1. In (a) �/�cr = 0;
(b) �/�cr = 0.8; (c) �/�cr = 0.93; (d) �/�cr = 0.98; (e) �/�cr = 0.99 and (f) �/�cr = 1.

depends on the parameters of the system (in the simulations of
figure 2, we have fixed � = 0.0375 which corresponds to
�cr for α = β = 1), the first soliton emitted becomes
wider featuring a flat-top profile [30] which is characteristic
of systems with CQ nonlinearity (see picture (b) in figure 2).
However, if β > 0 and � � �cr, a continuous beam of constant
amplitude is outcoupled from the trap (see picture (c) in
figure 2). Note that the density plots in figure 2 correspond to
the final evolution stages (τ = 500) of simulations (a) top, (b)
middle and (c) bottom.

In terms of the physical description given above, it can be
stated that whenever � > 0, the system follows the eigenstate
structure for growing values of N, but only above the critical
value �cr the system is able to produce a coherent plane wave
of constant amplitude A. Furthermore, we have checked that
the amplitude of the continuous matter wave released remains
unaltered (unless small scale fluctuations) when three-body
losses [32] are taken into account. We have numerically
verified that whenever losses are moderate (typically less than
10−3β), their effect can be compensated by increasing the gain
in the system. For greater losses, the analysis turns out to be
more complicated and a more careful study, beyond the scope
of this paper, must be performed.

Another important feature of our system consists of the
possibility of controlling the spatial width of the first soliton
outcoupled. For a given pair of nonlinear coefficients [α, β],
this can be achieved by varying the gain coefficient � as it
can be seen in figure 3. In the snapshot (a) of figure 3, where
� is zero, almost all atoms are emitted in a coherent pulse
of finite width. The increment in the spatial extension of the
atomic soliton becomes non-negligible for small variations of
the gain parameter in the regime �/�cr ≈ 1 (see pictures (b)–
(f) in figure 3). The case for which the rate of atoms loaded
exactly compensates losses due to CW emission is illustrated
in figure 3(f). It is noticeable that for � > �cr, the CW emitted
preserves its peak density and constant shape, indicating that
the method is robust against perturbations.

1.0 1.2 1.4 1.6 1.8 2.0
β

0.01

0.02

0.03

0.04

Γ

α = 1.75
α = 1.00
α = 0.75

Figure 4. Working range of the CW atomic laser for three different
values of the two-body interaction parameter: α = 1.75 (black
pointed); α = 1 (red dashed) and α = 0.75 (green continuous). For
each value of the three-body interaction coefficient β, the
corresponding �cr is plotted indicating that over this value CW
emission is always achieved.

In figure 4, we have plotted the results of many simulations
in the whole parameter space, showing the working range of
the CW atom laser for different α values. The plotted lines
define the lower border of the operational region for each α,
i.e. the line points correspond to � = �cr, and CW emission
is assured for gain values over such limit.

5. Analytic condition for CW emission

In the following, we will derive an analytic expression for the
continuous matter wave emission based on waveguide modal
theory [33].

We consider the linear trap (depicted in figure 1) as a one-
dimensional linear step-index waveguide with the core index
nc = V0, cladding index ncl = 0 (left trap border) and substrate
index ns = Vnl (right border), Vnl being the effective potential
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created by the nonlinear interactions. For the moment, we
will treat Vnl as a constant value. In this context, the guiding
properties of the structure can be characterized by both the
normalized frequency f0 = L

√
V0 − Vnl and the cut frequency

fc(ν) = arctan
√

Vnl/(V0 − Vnl) + νπ , where ν is a non-
negative integer, which establishes a cut-off for the existence
of guided modes [33]. The specific case fc(0) corresponds
to the threshold of the fundamental mode. We assume that
if the lowest energy mode is cut there are no guided modes
supported by the waveguide and just radiation modes can be
excited. In other words, for f0 < fc(0), particles cannot be
trapped and will eventually flow towards η > 0.

Let us determine the values of Vnl for which the non-
guiding condition F = f0 − fc(0) < 0 is fulfilled. Fixing
L and V0 to the numbers employed in the simulations, we
have found the limiting value V c

nl = 0.05 numerically solving
F = 0. Thus, for Vnl > V c

nl, the guide cannot retain the matter-
wave field, while in the opposite case the particles will remain
trapped if the proper mode is correctly excited. Hereafter, we
will consider Vnl to be field-dependent owing to the existence
of nonlinear interactions within the region η � 0. On the right
border of the dipole trap, V c

nl = α|ψ |2 −β|ψ |4, indicating that
the potential barrier depends on the particle density. Note that
as |ψ |2 must be real, the latter expression predicts a cut-off in
the outcoupling mechanism since for V c

nl � α2

4β
, the emission is

forbidden. The agreement between analytical and numerical
estimations of this cut-off is above 90%.

We have also determined the dependence of V c
nl on V0

(fixing L) to be linear with the slope ξ = 0.917, ordinate
χ = −0.039 and correlation R2 = 0.9998. Finally, assuming
that the atomic cloud features a Gaussian transverse profile as
in the whole simulations, we arrive at the analytic expression
for the emission condition:

A2 � α +
√

α2 − 4β(ξV0 + χ)

2β e− L2

2ω2

, (4)

where A is the amplitude of the Gaussian atomic cloud loaded
in the trap. This condition establishes a lower limit for
matter-wave emission. Continuous operation of the atom
laser will be assured by keeping the peak particle density A2

above this threshold. In our numerical simulations, we have
added a linear gain factor in order to satisfy this condition.
Experimentally this could be realized by continuously loading
the optical trap with a flux of particles [31].

6. Discussion and conclusions

We have shown in this work that CW operation of a matter-
wave laser could be realized within an ample parameter
space for a negative scattering length and repulsive three-
body elastic interactions. Although the cubic–quintic model
can be considered an exotic system, it has been proposed that
repulsive three-body forces can be activated by simultaneously
switching on an optical lattice in η � 0 containing an ultracold
gas of particles with high magnetic or electric dipole moment
[19].

In summary, we have proposed a novel mechanism for
continuous operation of a coherent matter-wave laser. Our

system is able to perform a regular and controllable emission
of coherent atomic beams of constant amplitude with the only
limitation of the number of particles that can be loaded in
the trap. It is important to note that even though the present
paper is devoted to square traps, our results also apply to other
trap configurations without loss of generality. We have also
shown how the width of the first atomic soliton released can
be easily controlled by means of the variations of the input
gain. Moreover, we have derived an analytic condition for
the CW emission which relates the peak particle density of
the atomic cloud to the tunable parameters of the system. As
the techniques for coherently feeding BECs progress, our idea
could provide a novel approach to new types of matter-wave
lasers.
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Kohl M, Hänsch T W and Esslinger T 2002 Phys. Rev. A

65 021606
[8] Martin J L, McKenzie C R, Thomas N R, Warrington D M

and Wilson A C 2000 J. Phys. B: At. Mol. Opt. Phys.
33 3919

[9] Mohring B, Bienert M, Haug F, Morigi G and Schleich W P
2005 Phys. Rev. A 71 053601

[10] Guerin W, Riou J-F, Gaeblert J P, Josse V, Bouyer P
and Aspect A 2006 Phys. Rev. Lett. 97 200402

[11] Couvert A, Jeppesen M, Kawalec T, Reinaudi G, Mathevet R
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