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a b s t r a c t

We show that a gas-to-liquid phase transition at zero temperature may occur in a coherent gas of bosons
in the presence of competing nonlinear effects. This situation can take place in atomic systems like
Bose–Einstein condensates in alkali gases with two-body and three-body interactions of opposite signs,
as well as in laser beams which propagate through optical media with Kerr (focusing) and higher order
(defocusing) nonlinear responses. The liquefaction process takes place in the absence of any quantum
effect and can be formulated in the framework of a mean field theory, in terms of the minimization of
a thermodynamic potential. We study from a thermodynamic point of view all the stationary solutions
of the cubic–quintic nonlinear Schrödinger equation which describes our system. We show that solitonic
localized solutions connect the gaseous and liquid phases. Furthermore, we also perform a numerical
simulation in the presence of linear gain and three-body recombination where a rich dynamics, including
the emergence of self-organization behavior, is found.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Paraxial propagation of linearly polarized laser beams through
transparent optical media with intensity dependent refractive
indexes is mathematically equivalent to the free evolution of the
wavefunction order parameter used in the mean field description
of a two-dimensional gas ofN interacting atoms in a Bose–Einstein
Condensate (BEC) at temperature T = 0 K [1]. The two systems can
be modeled by identical nonlinear Schrödinger equations [2]. For
photons in the laser beam, the χ (n) component of the nonlinear
optical susceptibility plays the same role as n-body interactions
between atoms in the cloud, and the propagation constant can
be identified with a chemical potential for the light distribution.
As all the photons in a coherent wave are equal, the laser beam
can be treated on an equal footing with any system of N identical
interacting bosons at zero temperature [3].
The previous point of view, which takes into account the

equivalence between laser beams and BECs of ultracold atoms, has
led to an interesting suggestion made by Chiao [4], who recently
proposed verifying the superfluidity of coherent light, in analogy
with degenerate quantum atomic gases. More recently, similar
concepts have been successfully used to analyze condensation
phenomena of nonlinear waves [5] and quantum phase transitions
of photons in periodic lattices [6].
In Chiao’smodel the key point of the analysis is ‘‘same equations,

same predictions’’ and therefore photons from a monochromatic
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laser source are considered as an ideal bosonic gas at zero
temperature in which continuous phase transitions (CPT) can take
place due to long range quantum fluctuations around the ground
state [7]. These critical phenomena are thus called quantum phase
transitions (QPT) [8] to distinguish them from the standard phase
changes which are well-known in classical thermodynamics.
As we will show in this work, CPT may occur in any

classical system at zero temperature without long range quantum
correlations being involved, if opposite nonlinear interactions
are present. In the case of Chiao’s ‘‘superfluid light’’ the phase
transition is produced by the effect of a defocusing intensity
dependent refractive index [9] and thus a waveguide is used to
avoid spreading of the beam (in the same way as magneto-optical
traps are employed to hold atomic BECs). In the previous case there
is no trace of the presence of a liquid state [10,11] as there are
no surface tension effects [12]. Moreover, in Chiao’s model, the
interactions between particles are repulsive and they cannot drive
a gas–liquid transition.
Thus, in this work we will follow the same lines of thought to

suggest the possibility of obtaining a gas-to-liquid phase transition
in a classical gas at T = 0 K described in a mean field
theory by the so-called cubic–quintic (CQ) model with competing
nonlinearities. Several pioneering works have highlighted the
interesting properties of this CQ model [13,14]. Cavitation,
superfluidity and coalescence have been investigated [15–17] in
the context of liquid He, where the model is a simple approach
if nonlocal interactions are not taken into account. Stable optical
vortex solitons and the existence of top-flat states have been also
reported in optical materials with CQ optical susceptibility [18,19].
The surface tension properties that appear in this system [20] have
been considered as a trace of a ‘‘liquid state of light’’ [10].
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On the other hand, recent experiments concerning filamenta-
tion of high-power laser pulses in CS2 have shown that CQ nonlin-
earity is achievable in this material [21]. It has also been suggested
that atomic coherence may be used to induce a giant CQ-like re-
fractive index of Rb gas [11]. Thus, the practical realization of the
first ‘‘liquid of light’’ state as an example of non-quantum liquefac-
tion at zero temperature is close.

2. Mathematical analysis

The cubic–quinticmodel describes a coherent bosonic systemof
N particles with two-body and three-body interactions. The math-
ematical formulation of the mean field theory yields a generalized
nonlinear Schrödinger (NLS, also called Gross–Pitaevskii) equation
of the form

i
∂Ψ

∂η
+
1
2
∇
2
⊥
Ψ + γ |Ψ |2Ψ − δ|Ψ |4Ψ = 0. (1)

If the systemmodeled by the previous equation is a photon gas, the
above NLS describes paraxial propagation of a continuous linearly
polarized laser beam of wavelength λ in a nonlinear medium
with a refractive index depending on the intensity I in the form
n = n0 + n2I − n4I2 and the adimensional variables are: η,
the propagation distance multiplied by 2π/λ; |Ψ |2, the beam
irradiance multiplied by the Kerr coefficient n2 = γ ; n4 = δ,
an adimensional parameter indicating the strength of the quintic
nonlinear optical susceptibility; and ∇2

⊥
= ∂2/∂x2 + ∂2/∂y2, the

transverse Laplacian operator, where x and y are the transverse
spatial dimensions multiplied by 2π

√
2n0/λ.

In the case of a two-dimensional atomic BEC tightly trapped
along one axis by a parabolic potential of frequency ν⊥ and
thickness r⊥ =

√
h̄/mν⊥, the adimensional variables correspond

to: η, the time in units of ν−1
⊥
; |Ψ |2, the atomic density multiplied

by the two-body coefficient γ ; δ, an adimensional parameter
indicating the strength of the three-body interactions; and ∇2

⊥
=

∂2/∂x2+ ∂2/∂y2, the transverse Laplacian operator, where x and y
are the transverse spatial dimensions divided by r⊥.
Recent experiments for beam propagation in CS2 [21] at λ =

800 nm yield the following values for the above parameters in
the case of laser beams: n0 = 1.6, n2 = 3 · 10−15 cm2/W and
n4 = 2·10−27cm4/W2. Othermaterials like air [22] or chalcogenide
glasses [23] seem to display the CQ behavior usually accompanied
by ionization and nonlinear losses. There has also been pointed
out the possibility of engineering this type of optical response
by quantum techniques which allow one to access this nonlinear
regime with milliwatt ultrastabilized lasers [11]. For atomic BEC
systems it has been proposed that a combination of two-body
(attractive) and three-body (repulsive) elastic interactions can
yield liquid boselets [24]. However, three-body scattering in BECs
has inelastic contributions and yields highly nonlinear losses. This
means that in themost general case the coefficient δ in Eq. (1) may
be complex for laser systems as well as for atomic gases.
The above CQ NLSE admits soliton-like solutions of finite

size [13] of the form ΨA(x, y, η) = A(x, y)e−iµη , µ being the
propagation constant in the case of light and the chemical potential
for atomic BECs. These solitons can only be calculated numerically.
They coexist with plane wave solutions of constant amplitude
ΨA(x, y, η) = Ae−iµη , in which case, by substituting in Eq. (1), we
get the analytical relation

µ = δ|A|4 − γ |A|2. (2)

In Fig. 1 we have plotted the maximum value of γ |Ψ |2 versus
µ for different kinds of stationary solutions of Eq. (1). The
continuous and dotted lines correspond respectively to stable and
modulationally unstable planewaves [25],whereas the dashed line
Fig. 1. [Color online] Maximum squared amplitude of different kinds of stationary
solutions of Eq. (1). The continuous and dotted curves correspond to plane
waves. The dashed line represents numerically calculated localized eigenstates. The
continuous and dashed curves join at (δ/γ )|Amax|2 = 0.75, |µ| = |µeq|. Horizontal
lines indicate the critical values (δ/γ )|Amax|2 = 0.5 and (δ/γ )|Amax|2 = 0.75.
Labeled points correspond to solitons that are considered as special examples in
the text.

Fig. 2. [Color online] Plots of minus the grand potential density (−GPD = − ∂Ω
∂S
)

for the plane wave solution branches of Fig. 1 (green solid, stable; purple dashed,
unstable) and its value at the center (x = 0) of the eigenstates (thick dotted line)
corresponding to different points in the dashed line of Fig. 1 (assuming γ = δ = 1).
Insets: profiles of the eigenstates (dashed) and−GPD distribution (solid). The x axis
indicates the transverse size of the numerically calculated distributions of different
eigenstates of Eq. (1). We have multiplied γ |Ψ |2 and p by 10 and 100 respectively
in (a) and p by 10 elsewhere.

stands for numerically calculated localized eigenstates [26]. As is
known [18], the shapes of the solitons (see the dashed profiles in
Fig. 2) vary from quasi-gaussian for low powers to almost square
profiles for beam amplitudes close to a limiting value of µ =
µlim = −0.1875γ 2/δ [18,26]. At this point the size of the solutions
tends to infinity whereas the amplitude of the beam stabilizes at
|Amax|2 = |Alim|2 = 0.75γ /δ.
For convenience, in Fig. 1 we have scaled the horizontal,µ axis,

in units of µlim. We also define |µliq| as the value of µ for which
the peak amplitude of the localized solutions in Fig. 1 is maximum.
We see in Fig. 1 that the localized solution and stable plane wave
branches seem to merge there. Moreover, all the solitons having
|µ| > |µliq| turn out to have a top-flat shape, that has been shown
to behave like a liquid [10]. We leave for the next section the
definition of the other critical value µ = µfil, which arises from
the thermodynamical analysis of the eigenstates.
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3. Thermodynamic model

The appropriate tool for studying the equilibrium condition as
a function of the number of particles N =

∫
|Ψ |2dxdy is Landau’s

grand potential

Ω = H − µN

=

∫
dxdy

[
1
2
|∇⊥Ψ |

2
−
γ

2
|Ψ |4 +

δ

3
|Ψ |6 − µ|Ψ |2

]
, (3)

where the Lagrange multiplier µ is the chemical potential for
a BEC. By requiring that Eq. (1) corresponds to δΩ

δψ∗
= 0 for

the stationary solution, we have that µ has to be equal to the
propagation constant that we have introduced above.
In two dimensions, it is then natural to define the partial

derivative (∂Ω/∂S)µ,T of the grand potentialΩ with respect to the
area S at constant chemical potential µ and temperature T . This
yields the following grand potential density (GPD):

GPD = (∂Ω/∂S)µ,T = +
1
2
|∇⊥Ψ |

2
−
γ

2
|Ψ |4 +

δ

3
|Ψ |6 − µ|Ψ |2.

(4)

In the region of space where the gradient term can be neglected,
this definition reproduces the approximate result that has been
obtained in Ref. [15] using Madelung transformations [27] in the
particular case of plane wave or top-flat solutions,

(∂Ω/∂S)µ,T = −
2δ
3
|A|6 +

γ

2
|A|4. (5)

Note that the latter equation also uses Eq. (2), which is only correct
for the plane waves and for the top-flat solutions far enough from
the boundary of the liquid drop. On the other hand, our new result
Eq. (4) is more general, since it takes into account the gradient
term, and can also be used to describe the behavior near the border
of the top-flat solitons. Moreover, it can also be applied to the low
power, quasi-gaussian solitons, for which the gradient term is not
negligible, provided that the correct numerical value of µ is used.
The numerical result for the computation ofGPD in thewhole space
for both the top-flat and for the quasi-gaussian solitons is given in
Fig. 2, which will be discussed below.
Although all the solutions of Eq. (1) correspond to δΩ

δψ∗
= 0,

we find two or three different kinds of solutions, depending on
the value of µ, as shown in Fig. 1. From Fig. 2, we see that the
lower-branch plane waves, corresponding to the gaseous phase,
have positive density of Ω , while the higher-branch plane waves,
corresponding to the liquid phase, have negative density of Ω .
This thermodynamic argument shows that the gaseous phase is
metastable. In fact, the analysis of linear stability that has been
performed in the literature [25,16] using non-zero wavevector
perturbations, together with our numerical simulations, confirms
that the gaseous phase is indeed modulationally unstable.
FromFig. 2,we also see that there are two configurations having

∂Ω/∂S = 0, namely, the trivial case |A| = 0 and a uniform
phase, with µlim = −

3γ 2

16δ and |Alim|
2
= 0.75γ /δ. In the language

of field theory, these solutions are the two possible ‘‘vacuum’’
states of the system. As can be seen in Fig. 1 the two vacua can
be ‘‘connected’’ by the soliton solutions of the dashed line in Fig. 1.
It is interesting to note that the non-zero vacuum solution implies
a spontaneous symmetry breaking of the global phase symmetry,
which is preserved in the case with |A| = 0.
Let us now discuss in more detail our results for the GPD, which

is plotted in Fig. 2 as a function ofµ/µlim, for the same branches of
solutions as were defined in Fig. 1. Very remarkable is the fact that
the value of −GPD for the stable branch is higher than that of the
unstable branch. This implies that free energy density of the stable
plane waves is smaller than the free energy of the modulationally
unstable solutions branch. In Fig. 2 we also plot the curve of
the central values of −GPD for the eigenstates, as a function of
µ/µlim. As can be seen from the graph, the curve corresponding
to the eigenstates is bounded by the two curves of the plane wave
branches, so the existence domain of the filament phase is limited
by them. In the insets of Fig. 2, we show the shape profiles of the
eigenstates (dashed line) superposed with their effective −GPD
profiles (solid lines), which have been conveniently rescaled to
fit in the graph. As can be appreciated in inset (a), solitons with
|µ| � |µlim| have smooth distributions with a central maximum
located at the centroid of the soliton and two negative-valued
minima. As the value of |µ| increases, the soliton profiles and
their corresponding shapes of−GPD narrow, reaching a minimum
width at µ/µlim = 0.5, which corresponds to a filament soliton
solutionwith the same peak amplitude as the ‘‘critical’’ planewave
with |A| = |Acr |. This plane wave marks the border between
stable and modulationally unstable plane waves [15]. When the
chemical potential reaches the value |µ| = |µfil| (see inset (b)), the
absolute maximum of −GPD for eigenstates is obtained, i.e., this
filament has the minimum of dΩ/dS at its centroid. For |µliq| <
|µ| < |µlim|, the minimum of the Landau’s grand potential density
is located in a flat region (see inset (c)), tending to zero as |µ|
approaches the critical value |µlim|, point (d) in Fig. 1, over which
no localized solutions exist [18].
In particular, the insets in Fig. 2 show a significant, qualitative

difference between the distributions of the low-power quasi-
gaussian solutions and that of the high-power top-flat solutions
of Eq. (1). This can be considered as a new, further proof of the
existence of two phases: the liquid and the gaseous.

4. Condensation in the presence of linear gain and nonlinear
losses

In this section, we will provide a set of numerical simulations
showing the condensation process, i.e., the phase transition from
the gaseous phase to a homogeneous coherent ‘‘liquid’’ planewave
solution corresponding to the upper branch in Fig. 1. In order
to achieve this result, we will perturb an unstable plane wave,
corresponding to the lower branch in Fig. 1, with a randomly
varying noise. This will produce a filamented phase, made of
coherent structureswhose shape remains qualitatively unchanged,
up to smaller scale fluctuations [28].
In order to achieve the non-quantum liquefaction we have

included both a linear incoherent pumping mechanism and
nonlinear three-body losses [29]. In other words, we have
considered δ = δR + iδI and we have introduced a linear gain
term iΓ Ψ in Eq. (1). This corresponds to a continuous load of
particles in the system. Note that in this way, we are describing
a more realistic non-conservative version of Eq. (1), which models
an experimentally achievable scenario in the framework of current
BEC experiments. In fact, in condensedmatter systems it is possible
to control the load of particles and two-body and three-body
recombination within the coherent atomic cloud.
On the other hand, in nonlinear optics, such nonlinear models

are well-known in the framework of complex Ginzburg–Landau
(G–L) equations used to describe wide-aperture laser cavities [30].
Although it is always possible to control the linear gain introduced
in the system, three-body losses are often imposed by the
nonlinear response of the material, so it is not possible to manage
the dissipative terms of the system. However, by means of
electromagnetic induced transparency techniques, it is possible to
customize the nonlinear optical response of cold atomic ensembles
like Rb [11] so that the nonlinear refractive index corresponds
to the one given by the modified Eq. (1) analyzed in the current
section of the paper. Therefore our model, and its predicted
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Eq. (1) has a density |Ψ |2 ≈ 3
4 , which corresponds to the plane

wave of the stable ‘‘liquid’’ upper branch with an amplitude corre-
sponding to the state of zero value of the grand potential density.
Notice that this choice has been made in order to correlate the
analytical results summarized in Section 3 for the conservative
system governed by Eq. (1) and the numerical simulations of the
non-conservative model discussed in the current section.
Very remarkably, during the process, vortex–antivortex pairs

with topological charges mv = 1,mav = −1 are formed (see
the bottom phase maps in Fig. 4), so the constant phase of the
emerging coherent wave remains hidden by the overlapping of
the different vortex rotating phase distributions. Vortices are very
robust topological structures [12] and in our simulations they
remain stable as far as we could follow the numerical simulations.
We must also stress that our simulations in Figs. 3–5 only

display a square central region of an extensive light condensate
of finite size which grows as the number of particles increases
(see Fig. 6), due to the net gain of the system. Therefore, the
combined effect of the real and imaginary parts of the nonlinear
interactions is to increase the size of the beam, keeping the peak
density constant.
Finally, we have considered the effect of replacing the linear

gain term by a nonlinear gain term of the form iχ |Ψ |2. In this
situation, the numerical results are similar to those in Fig. 4,
although it can be observed that in the last stage of the evolution
the vortices are annihilated. We want to emphasize that this fact
does not reveal an exclusive feature of the system with nonlinear
gain, since we have performed such a simulation with a linear
gain term Γ = χ , where χ is the nonlinear gain coefficient
considered in the simulation displayed in Fig. 5, and the vortex
annihilation process was also observed. Anyway, we have seen
a significant difference in the timescale of the process, i.e., for
Γ = χ , by considering that the nonlinear pumping mechanism
vortices have disappeared faster than in the case of linear pumping,
Fig. 3. [Color online] Numerical simulation of the evolution of a set of filaments in the presence of linear gain and three-body losses. Propagation algorithm parameters:
γ = 1, Γ = 10−2 , δ = 1 + 0.1i. Top: pseudocolor maps of the amplitude. Bottom: pseudocolor maps of the phase corresponding to the amplitudes above. As can be
appreciated in the sequence of snapshots, the initial condition, which has a certain level of organization, evolves towards a completely disordered situation, i.e., the diluted
disordered gaseous phase arises. The horizontal (vertical) axis displays the spatial variable x (y) which is defined within the interval x (y) ∈ [−175, 175] The frames
correspond to values of the adimensional variable η: 0 ((a), (d)), 1000 ((b), (e)) and 4000 ((c), (f)).
phenomenon of liquefaction that we will demonstrate below, can
correspond both to realistic BEC and to nonlinear optical systems.
In Fig. 3, the initial state consists of an incoherent set of

filaments with a randomly varying phase distribution. Within
this apparent disorder, some coherent uncorrelated structures
(filaments) exist and canbe observed in Fig. 3 (a). In this simulation,
wehave considered a nonlinear parameter regimewhere the linear
gain was not enough to compensate for the three-body dissipative
term. As a consequence, a certain degree of coherence is lost since
the filaments disappear and only the noisy background is observed,
as shown by snapshot (c) in Fig. 3.
Starting from the same initial condition but increasing the

linear gain term over a certain threshold, we have performed
the simulation shown in Fig. 4. In this case, we see that the
system evolves towards a homogeneous planewave because of the
combined effect of adding particles to the initial random state and
dissipation due to many-body inelastic processes. This relaxation
process is well-known in the context of the complex G–L equations
and is attributed to the non-conservative nature of the model [31].
The density of the resulting plane wave is set by the ratio between
gain and loss

|Ψ |2 ≈

√
Γ

δI
. (6)

Obviously, for reaching a stable plane wave after the liquefac-
tion process, the resulting density |Ψ |2 must belong to the up-
per plane wave branch shown in Fig. 1. As can be appreciated in
Fig. 3, the parameters used in the simulation give rise to a uni-
form density |Ψ |2 ≈

√
0.1 ≈ 0.3162, which falls on the unsta-

ble plane wave branch. In contrast, in the simulation displayed
in Fig. 4, we have chosen the parameters following this expres-
sion Γ = (9/16)δI , so that in such a case, the spatially uni-
form solution obtained after numerical integration of the modified






