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Nonlinear dual-core photonic crystal fiber couplers
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We study nonlinear modes of dual-core photonic crystal fiber couplers made of a material with the focusing
Kerr nonlinearity. We find numerically the profiles of symmetric, antisymmetric, and asymmetric nonlinear
modes and analyze all-optical switching generated by the instability of the symmetric mode. We also de-
scribe elliptic spatial solitons controlled by the waveguide boundaries. © 2005 Optical Society of America
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Photonic crystal fibers (PCFs) have attracted a lot of
attention due to their intriguing properties, potential
applications, and the development of successful fab-
rication technologies.1 PCFs are characterized by a
conventional cylindrical geometry with a two-
dimensional lattice of airholes running parallel to the
fiber axis. Such structures share many properties of
photonic crystals, associated with the existence of
frequency gaps where the light transmission is sup-
pressed due to Bragg scattering, as well as the guid-
ing properties of conventional optical fibers, due to
the presence of a core in the structure.

Recent theoretical and experimental results re-
ported the study and fabrication of dual-core PCF
structures for broadband directional coupling or po-
larization splitting.2–6 In PCFs, light confinement is
restricted to the core of the fiber and therefore non-
linear effects, such as light self-trapping and localiza-
tion in the form of spatial optical solitons,7 become
important. In particular, similar to two-dimensional
nonlinear photonic crystals,8 a PCF can support and
stabilize both fundamental and vortex spatial optical
solitons.9,10 In sharp contrast with an entirely homo-
geneous nonlinear Kerr medium where spatial soli-
tons are unstable and may collapse, it was shown
that the periodic structure of PCF can stabilize the
otherwise unstable two-dimensional solitons.

In this Letter, we make a further step forward in
the study of nonlinear effects in the PCF geometry
and analyze the existence and stability of nonlinear
guided modes and spatial solitons in dual-core PCF
couplers. The beam propagation and power-
dependent switching in nonlinear directional cou-
plers have been analyzed for the planar waveguide
geometry.11 Here we generalize those results for
PCFs, as well as study the existence and stability of
guided modes and elliptic spatial solitons controlled
by the PCF holes. In particular, we find numerically
the profiles of symmetric, antisymmetric, and asym-
metric nonlinear modes and analyze all-optical
switching based on the mode instability.

We consider a simple model of PCF that describes,
at a given frequency, the spatial distribution of light
in a nonlinear dielectric material with a triangu-
lar lattice of airholes with radius r in a circular
geometry. We assume that the PCF material has a
nonlinear Kerr response, and there are two missing
holes at the center filled by the same material creat-
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ing a nonlinear defect, as shown in Figs. 1(a)–1(c). In
the substrate material, the linear refractive index is
ns, whereas inside the holes it is na. In the nonlinear
regime, the light distribution in PCF is described by
the equation

− i
]E

]z
= D'E + Wsx,ydE + Vsx,yduEu2E, s1d

where Wsx ,yd=na+ sns−nadVsx ,yd, D'=]2 /]x2+]2 /]y2

is the transverse Laplacian, E is the normalized elec-
tric field, and Vsx ,yd is an effective potential describ-
ing two solid cores in the lattice of holes. We normal-
ize V=1 in the material and V=0 in the holes.

To find stationary nonlinear modes of PCF, we look
for solutions in the form Esx ,y ,zd=usx ,ydexpsibzd
and obtain the nonlinear eigenvalue problem

bu = D'u + Wsx,ydu + Vsx,yduuu2u. s2d

To find the solutions of Eq. (2) for nonlinear localized
modes, we consider a rectangular domain of the sx ,yd
plane and apply a finite-difference scheme, taking,
respectively, N and M uniformly distributed samples
xi s0ø i,Nd and yj s0ø j,Md of the variables, as well
as the corresponding samples for the stationary
state, uij=usxi ,xjd and the potential Vij=Vsxi ,yjd. Sub-
stituting these variables into model (2) and imposing
homogeneous boundary conditions in all four edges of
the domain, we obtain an algebraic nonlinear prob-
lem of 23N3M equations with the same number of
unknown uij, which is finally solved by means of a
globally convergent Newton method. The presence of
the external linear potential given by two missing
holes and the lattice of airholes makes the system
nonscalable and its radial symmetry broken. Another

Fig. 1. Schematic of three studied designs of a nonlinear
dual-core PCF. The coupler is created by two missing
neighboring holes in a nonlinear material.
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approach, which takes advantage of the lattice peri-
odicity, was developed recently by Ferrando et al.9

First, we consider a single missing hole and find so-
lutions numerically for the PCF spatial solitons.9 Im-
portantly, these stationary solutions are not perfectly
radial, but they are stabilized by the PCF holes, in
sharp contrast with the unstable self-trapped beams
in nonlinear focusing Kerr media. To demonstrate
this feature, we follow the standard analysis of the
soliton stability7 and analyze the soliton power as a
function of the soliton propagation constant. A posi-
tive slope of this dependence indicates the soliton
stability.

Next, we study the dual-core nonlinear PCFs
shown in Figs. 1(a) and 1(b) and find the families of
the spatially localized modes—the so-called PCF spa-
tial twin solitons—as a function of the mode propaga-
tion number b. The corresponding solutions are simi-
lar for two cases of Figs. 1(a) and 1(b), and they can
be envisaged as the modes of the effective dual-core
fiber generated by the combined effect of the dual-
core PCF refractive index and the nonlinear index in-
duced by the mode amplitude itself. Contrary to the
linear coupler, which supports only one symmetric
mode and another antisymmetric one, the nonlinear
dual-core PCF supports both symmetric (A) and anti-
symmetric (B) modes, along with an asymmetric
mode (C), as shown in Fig. 2 for the case of Fig. 1(b).
The corresponding spatial profiles of these nonlinear
modes are shown in Fig. 2(d) as cross-sectional cuts
along the line y=0.

To demonstrate the power relation between the
modes, we follow the standard analysis of the soliton
stability12 and plot in Fig. 3 the soliton power as a
function of the soliton propagation constant for the
three different families. We notice that only two
modes, symmetric and antisymmetric ones, may exist
for low powers, whereas the asymmetric mode bifur-
cates from the symmetric mode at a certain threshold
value of the mode power, above which the symmetric

Fig. 2. (a)–(c) Light distribution between the two PCF
cores in Fig. 1(b) for three distinct nonlinear modes: A,
symmetric; B, antisymmetric; and C, asymmetric. (d)
Transverse profiles of the nonlinear modes sb=3.95d.
mode becomes unstable. Besides, the limit of these
nonlinear modes when power vanishes corresponds
to the linear coupler, so the power curves start at the
values of b corresponding to the linear modes.

All the calculations were done for ns=5, na=0, hole
radius r=0.75, and hole separation L=2. The values
of these parameters do not affect the physics of the
system and were chosen for the sake of simplicity and
to get a clear power diagram. In fact, a constant can
always be added to both indices, only supposing a dis-
placement in the propagation constant (the power
curve would be shifted horizontally). On the other
hand, the index difference between the substrate and
the holes can always be compensated by a proper
spatial rescaling of the system.

To study the switching properties of the nonlinear
coupler, we carry out a series of numerical simula-
tions using the standard beam propagation method.
First, we calculate the stationary mode of a single-
core PCF with the same parameters as the coupler
corresponding to different powers. Then, this mode is
launched into one of the cores of the dual-core coupler
and, after some propagation, the output power is cal-
culated at the same core. The propagation distance is
determined considering the same coupler operating
in the linear regime and propagating the linear
single-core mode launched to one of the coupler cores
up to the point where all the energy is transferred to
the second core. For the parameters used in our ex-
amples this point is reached at z=21.23. The switch-
ing curve is obtained by varying the input power for
the fixed propagation length, and it is plotted in Fig.
4. Similar to other types of nonlinear directional cou-
plers, the input power is transferred completely to
the second core for low powers, whereas it remains in
the initial one for higher input powers. A change be-
tween both the regimes takes place in a relatively
short range of powers, which constitutes a threshold
where the power switching is triggered. For low pow-
ers (under the bifurcation point) the energy is com-
pletely transferred to the second core, although from
the plot in Fig. 4 a residual amount seems to remain

Fig. 3. Bifurcation diagram of the coupler modes. Inset,
enlarged part near the bifurcation point. Asymmetric mode
C bifurcates from symmetric mode A at point O1 above a
certain threshold in the mode power.
in the first one. This nonzero behavior of the curve
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close to the origin is explained by the way in which
the output power is computed, integrating the inten-
sity in the semiplane corresponding to the desired
core. In that way, the tail of the field in the other core
slightly overlaps the first one due to its proximity,
producing a residual power even when the field in the
computed core is zero.

Finally, we study the third case of the closely
spaced holes, shown in Fig. 1(c). In this case, there
exists no bifurcation to the asymmetric state and the
fundamental mode itself is elliptic as shown in the in-
set of Fig. 5. In the nonlinear case, this elliptic guided
mode gives birth to an elliptic spatial soliton con-
trolled by the boundaries of the holes. In Fig. 5, we
plot the mode eccentricity parameter «= f1
− sw /w d2g1/2, where w and w are the mode axes

Fig. 4. Switching curve calculated for the PCF nonlinear
coupler of Fig. 1(b). Due to the stability of the asymmetric
mode and the instability of the symmetric one, the light
launched into one core only does not switch to the second
core but remains in the same core.

Fig. 5. Transformation of the elliptic guided modes to cir-
cular solitons for the growing mode power. Three examples
on the top mark three points of the eccentricity curve for
b=4.2, b=6, and b=15, respectively. Inset, the correspond-
ing beam cross sections at y=0.
x y x y
(widths), and thus quantify the transformation of the
elliptic guided modes (A) to the elliptic solitons (B)
and then to the radially symmetric solitons (C).
These results resemble the transformation of the
shape of nonlinear guided modes in planar
waveguides.13

In conclusion, we have demonstrated that several
types of two-dimensional spatial optical solitons can
be supported by a nonlinear dual-core PCF structure
with the Kerr nonlinearity. We have analyzed nu-
merically the existence and stability of symmetric,
antisymmetric, and asymmetric nonlinear modes,
demonstrating that the periodic refractive index of
PCF provides an effective stabilization mechanism
for these composite localized modes to exist in a non-
linear Kerr medium, in sharp contrast with an en-
tirely homogeneous nonlinear Kerr medium where
spatial solitons are known to be unstable and un-
dergo collapse instability. We have studied all-optical
switching in the nonlinear dual-core PCF coupler as-
sociated with the instability of the symmetric mode.
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